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The oscillation theorem of Karlin (the snake theorem) has been extended in a
number of ways by Pinkus and others. We show that the theorem is valid for
(almost) arbitrary unisolvent families where there are no continuity requirements
on the upper and lower bounding functions. Under an essential additional
hypothesis, the theorem is also true for varisolvent families. A number of
applications to uniform approximation from unisolvent families and Chebyshev
spaces are considered. 'D 1993 Academic Press. Inc.

l. PRELIMINARIES

Karlin's oscillation theorem [4] (termed the "snake theorem" by Krein
and Nudel'man [7]) has been extended in a number of ways [3,5,11,14].
Pinkus has asked if the snake theorem remains valid when Chebyshev
spaces are replaced by unisolvent families, and indeed has answered the
question in the affirmative when the unisolvent family is extended uni­
solvent [11]. In this paper we will demonstrate that the theorem is valid
for (almost) arbitrary unisolvent families and also, under some restrictions,
for varisolvent families. Some applications to the theory of uniform
approximation will also be considered. 11·11 will always represent the
uniform norm on the compact interval [a, b]. The definitions of nodal zero
and nonnodal zero are taken from [4].

Recall (taking the definition of Motzkin [10]) that a family II of func­
tions defined on [a, b] is unisolvent of degree n ~ 1 if for any n values
X"X2,,,,,Xn with a~xI<x2< ... <xn~b and arbitrary real numbers
Y.. Y2' ..., Yn, there is an element P of II such that p(x;) = yj, i = 1, 2, ..., n,
and furthermore, for distinct PI' P2 in II, PI - P2 has fewer than n zeros in
(a, b), where a zero x in (a, b) is counted twice if PI - pz does not change
sign in a neighborhood of x. (Actually, this last requirement can be
dropped without changing the definition.) Still further we require that for
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SNAKE THEOREM FOR UNISOLVENT FAMILIES 111

p in fl, p(x) = p(x; XI' X2, ..., x,,; Yl' Y2, ... , y,,) be a continuous function of
x, .'vI, Y2' ... , YII'

The proof that we present is an amalgam of proofs in [5] and [6],
where corresponding results are developed for Chebyshev spaces. Essen­
tially, all that is required is to show that these arguments can be modified
to apply to the unisolvent setting. However, since unisolvent families need
not be linear, and since [5J and [6J rely on linearity and on Chebyshev
space properties at many points, the revised arguments need to be restated
in detail. ([6] is not easily available in any case.) We will need the
following lemma.

LEMMA 1. Let fl be a unisolvent family of degree n, let 11,12, ..., 1m,
1~ m ~ n be a collection of pairwise disjoint, closed subintervals of [a, bJ
(where we further insist that II i= [a, b] if m= 1), let g be an arbitrary
element of fl, and let (E L, E2 , .•. , Em) be a given vector with real components,
IE;I = 1 for 1~i~m and E;= -e;+I' 1~i~m-1. Let E>O be given.
Then there is an element p of fl such that for each i, I ~ i ~ m,
sgn(p(x)-g(X))=E; ([x is in Ii> and lip-gil <E.

Proof Without loss of generality, we may assume that the intervals are
arranged in increasing order (using the obvious definition). Let Ii =
[a j , bJ, t ~ i ~ m, and assume for the moment that m> I. Suppose first
that n~m is even. Define c;+ L = !(bi+ai+I), t ~i~m-l, and set CI =a l •

Choose cm+ I 'cm+2' ...,c" so that cm<cm+1 < .. · <cn<am. For 0>0 let
p be the unique element of fl such that p(c 1 ) = bEl + g(Cl) and p(cJ = g(cJ,
2 ~ i ~ n. p - g has zeros only at c2' ... , c" and must change signs at these
points since otherwise p - g would be identically zero. Note that
sgn(p(bm_Jl-g(bm_Jl)= -sgn(p(am)-g(am)) since p-g changes sign
an odd number of times between bm- L and am' Clearly p - g has the
required sign structure. Now suppose that n - m is odd. Choose the c;'s as
above except take c" = b"" and for 0 > 0, define p to be the unique element
of fl for which p(c,,) = OEm + g(cn), p(cJ = g(c,), 2 ~ i ~ n - 1, and p(c l ) =
bEl + g(c l )· We claim that p- g has zeros only at C2' ... , C" I on the
interval [aI' bm ], and that p - g changes signs at these zeros. Note
first that, in any event, p - g cannot have more than one zero
distinct from C2' ..., Cn I' and such a zero must be one where p - g
changes sign. (Otherwise p - g is, again, identically zero.) If there were
such a zero in (ai' bm ) this would force E I = sgn(p(aJl- g(aJl) =
(-1)"- L sgn(p(bm)- g(bm)) = (-1 )"-1 Em' whereas E I = (- t)m - I Em =
( - 1)" em since n - m is supposed odd, giving a contradiction. If p - g
failed to change signs at anyone of C2' C}, ..., C" L' this would lead to a
similar contradiction. It remains only to invoke the continuity property
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112 LEE L. KEENER

and choose b > 0 sufficiently small to guarantee that lip - gil < e.
Straightforward modifications of the above argument allow us to deal with
the case m = 1.

2. THE SNAKE THEOREM

The following theorem is an analog of Theorem 1 in [6]. Note that we
will call a zero of a function where the function changes sign a nodal zero,
and a zero where there is no sign change (in some neighborhood) will be
called a nonnodal zero. We say that functions u and v, defined on [a, b],
touch at Xo in [a,b] if there are sequences (Xi) and (Yi) in [a,b] such
that Xi-+XO, Yi-+XO, and u(xJ-v(yJ-+O [6].

THEOREM 2. Let f and g be two real-valued functions defined on [a, b]
and let n be a unisolvent family of functions defined on [a, b], of degree n.
Assume there is a function w in nand e> 0 such that f(x) + e ~ w(x) ~
g(x) - e for all x in [a, b]. Then there is an element p* in n and points
x\ <x2 < ... <xn in [a,b] such that

(a) f(x)~p*(x)~g(x)forallxin[a,b];

(b) f touches p* at xJor i odd, 1~i~n;

(c) g touches p* at xJor i even, 2~i~n.

Furthermore, there is a function q* in n that satisfies conditions (a ' ), (b ' ),
(c ' ) obtainedfrom (a), (b), (c) by replacing p* by q* and interchanging f and
g in (b) and (c). The functions p* and q* are the only functions satisfving
(a), (b), (c) and (a'), (b ' ), (c ' ), respectively.

Proof The proof closely parallels that of [6] in its general structure.
We show only the existence of p*, the q* case being similar. The unique­
ness of p* and q* can be shown by standard zero counting arguments. (See
[4, p.70]; these Chebyshev space arguments work equally well for uni­
solvent families and will be used in part of the proof of Theorem 3 below.)
Let Men be the set of all functions p in n for which there exist n points
in [a, b], Z\ <Z2< ... <zn and n sequences (z;), 1~j~n such that

(1) z; ----.. Zj, 1 ~j~n;

. 1
jodd,(2) f(z;) ~ p(Zj) --;-, 1~ j~n, l~i<CX);

I

. 1
(3) g(z~) ~ p(Zj) +-;-, j even, 2 ~j~n, l~i<CX).

I
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The interpolation property of n guarantees that M is nonempty. Define the
functional F for each p in M by

F(p) = max{sup{p(x) - g(x): x E [a, b]}, sup{f(x) - p(x): x E [a, h]} }.

The theorem will be established if we can show that F( p*) = 0 for some
P* E M. Let p = inf{F(p): pE M} and choose (Pk) in M so that F(pd -+ p.
We may assume (possibly by taking subsequences) that Pk -+ P for some p
in n. Indeed, let 1/,,1/2' ... , 1/" be any n distinct points in [a, b] and assume
pdu;) = v~, 1 :::; i:::; n. If each of the n sequences (v~) has a convergent sub­
sequence, convergent say to V" then there is a subsequence of (Pk> that
converges to Vj at u j , 1 :::; i:::; n, and by the continuity property of unisolvent
families, this subsequence converges to p, where p is the unique element of
n that takes the values V, at U j ' 1:::; i:::; n. If (v~>fails to have a convergent
subsequence for some i, i.e., the sequence is unbounded, then (Pk >could
not have been a minimizing sequence as was hypothesized, since then
sup{F(pd:k:?: I} = oc. We next show that pEM. For each k, let (Z;k>:~1

and Zjk> for j= 1,2, ..., n be the n sequences and sequence limits associated
with Pk from the definition of M. Assume without loss of generality that
IZ;k - zjkl :::; Iii for all k and all). Again by taking subsequences if necessary,
we may assume that Zjk -+ 2j for 1:::; j:::; n, 21 :::; 22 :::; ••• :::; 2" are in [a, b].
Finally, we may assume without loss of generality that IZjk - zjl :::; Ilk for
all k and). For each j we find a sequence (y7' >,;; ~ 1 and a sequence
(s7' >:. ~ 1 such that s7' -+ 0 and y7' -+ Zj and either f(y;") :?: p(z) - s7' if j is
odd or g(yj'):::; p(Zj) + s7' if) is even. Indeed, define (y;" >;;;~ 1 by y;" = z7,:,
for all m. Then

I 1 2
1=.;::,- iiI ~ I::;::l-Zjml + !::jm -iii ~-+-=-m m m

so y7' -+ =j for each). Suppose j is odd. Then

Setting s;" = [(pU j ) - p(zlm)) + P(Zjm) - Pm(z/m))] + 11m, we observe that
s;' -+ 0 for each j by the (uniform) convergence of (Pm> to p and the con­
tinuity of p. A similar treatment is used for j even. By taking subsequences
if necessary we may find sequences that satisfy the conditions in the defini­
tion of M. It is clear from the continuity of P and the hypothesis on the
existence of the function If that in fact we have =1 <=2< ... <ill' Thus
p EM. If p = F(p) = 0 we are done, so suppose to the contrary that
F(p) > O. Using standard arguments and recalling again the existence of It'

we can find n disjoint intervals 11 = [aj' bJ,.i = 1,2, ..., fl, and a lJ > 0 such
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that i j E Ii and p(x) ~ g(x) - b if x ¢ U {I;: j is even} and p(x) ~ f(x) + b if
x ¢ U {Ii: j is odd}. Define the n-tuple (0",,0"2' ... , 0"11) by

if j is even and p(x) > g(x) for some x E I;;

if j is odd and p(x) < f(x) for some x E 1/;

otherwise.

Let dj=!(bi+a;+l) for }=1,2, ... ,n-1. Let r"r2 , ... ,r"'_1 be those
elements among the d/s, arranged in increasing order, for which
100j - 0"/ + ,I # 1 and let K j , 2 ~ i ~ m - 1 be chosen so that K j is the smallest
interval that contains all of the I; intervals lying between r j _ 1 and ri , with
appropriately modified definitions for K 1 and K",. (We assume m> 1 here.
A straightforward modification handles the m = 1 case.) By Lemma I, for
a given t; > 0, there is an element P, in Jl such that p - P, alternates in
sign on K" K 2 , ... , K"" Ilfi- pJ <£ and has a stipulated signum value on
any single given K j • In fact, by supposition, for some} =} *, 0";. # 0. So
let us assume that P, is chosen so that sgn(p(i;.) - p,(i/.)) = O"r' For suffi­
ciently small £>0, P, is such that O<sup{p,(x)-g(x):xEI

J
.}<

sup{p(x)-g(x):xEI/.] ifj* is even or O<sup{f(x)-pAx):xEI;.} <
sup{f(x)-p(x):xEI;.} if j* is odd. From the definitions of P, and
(0"1,0"2' ... , 0"11) we may deduce, by working step by step from I;. through
the intervals to the left and right of I;., that for sufficiently small £ > 0,
inequalities of the above form hold for all I; with O"j # 0, that p, EM, that
p,(x)<g(x) if x¢U {I;:}iseven] and p,(x»f(x) if x¢U {Ij:}isodd}.
These facts together imply that F(p,) < p, a contradiction, and the theorem
follows.

The next theorem is the analog of Theorem 2 of [6].

THEOREM 3. Let j: g be two real-valued functions defined on [a, b] and
let Jl be a unisolvent family offunctions of degree n, defined on [a, b]. We
make the further technical assumption (Assumption A) that every element of
Jl is bounded away from f on some subinterval of [a, b] and from g on some
subinterval of [a, b]. Assume that Q, defined by Q = {q E Jl: f(x) ~ q(x) ~
g(x) for all x E [a, b]} is nonempty and that f and g do not touch on [a, b].
Then the follmving are equivalent:

(2.1) Q is a singleton.

(2.2) There exists a q* in Q that oscillates n + 1 times between f
and g (i.e., q* alternately touches f and g at n + I points and
lies between f and g).

(2.3) There is no q in Q for which £ > °can be found such that
f+£~q~g-£ on [a,b].
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Proof (2.2) ...... (2.1 ). Suppose q, is an element of Q distinct from q*
(whose existence is asserted by (2.2)). Then q, - q* has at least n zeros
counting nonnodal zeros twice. Indeed, assume that a ~ et I < et 2 < ... <
et" + I ~ b are the n + 1 points in [a, b] at which q* alternates, and further
assume without loss of generality that q* touches the upper function g at
the points with even subscripts. Then ql(etj)~q*(etJ for i odd and q,(etJ~

q*(etJ for i even, since qJ(etJ < q*(et j) for any odd j or q/(et ,) > q*(ct;) for
any even i would imply that q* did not touch f (respectively g) at et j •

Assume also that n = 2m, i.e., n is even. The argument that follows is a
variation on that found in Karlin and Studden [4, pp. 70-71]. For the
purposes of the proof, we say that a function h has a special zero at to in
a closed interval [c, d] if h(to) = 0 and either to E (c, d) (and for counting
purposes is counted twice if nonnodal) or to = c, h(t) ~ 0 for IE (c, C + c5)
or lo=d, h(I)~O for lE(d-c5,d). Let zi be the number of special
zeros of q*-ql in [!X2J+"!X2i+3J, j=O, I, ...,m-l. Then zj~2 for
j= 0, I, ..., m - 1 since q*(et2J+ ,) ~ ql(et2j+ 1)' q*(!X2j+2) ~ QJ(!X2j+2)'

q*( C(2J + 3) ~ q I(!X 2J + 3), so there are either two distinct special zeros in
[!X 2i + I' !X2j + 3] or else there is a nonnodal zero (counted twice) at iX 2i + 2'

Thus L7:,:o' Zj ~ 2m = n. But L;~o' zi is no greater than the number of
zeros of q* - q, on [a, bJ counting nonnodal zeros twice, nodal zeros once.
(We note that nonnodal zeros that occur at !X 2j + I for j = I, 2, ... , m - 1 are
counted twice in L zJ') A straightforward modification of the above
argument handles the case n = 2m + l. Thus q* - q, must be identically
zero since IT is unisolvent, contradicting the supposition of distinctness.

(2.3) ...... (2.2). Let if be in Q and suppose (2.2) is false, so that if does
not oscillate n + 1 times. Let a ~ 131 < 132 < ... < 13m ~ b be a set of m points
on which if oscillates a maximal number of times, so m ~ n. Assume
without loss of generality that if touches g at points 13; with even subscripts.
Define, for each i, real numbers I; and Uj by

I; = inf{ x: a ~ x ~ f3i' if touches g at x, and there is no y E [x, 13;]

such that if touches f at y}

Uj = sup{x: 13, ~ x ~ b, ij touches g at x, and there is no y E [f3i' x]

such that if touches f at y}

provided i is even. If i is odd, define U i, I, similarly, reversing the roles of
f and g. Since f does not touch g, 1£ i < I; +, for i = I, 2, ... , m - I. Further­
more, if I is any point at which ij touches either f or g, then t is in
ur~ l [I;, u;] (as a result of the maximality of the f3i'S). Let p,\ be an
element of IT that is strictly greater than ij on [t" 1£,] and alternately
strictly less than and strictly greater than ij on [f2' U2J, ... , [f,,,, umJ, and
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such that Ilq - p,d[ < 6. Such a function exists by Lemma I. Note that if
m = I, [I" {/, J1= [a, hJ as a consequence of Assumption A made in the
hypotheses. The necessity of the assumption here is related to the "constant
error curve problem" of varisolvent uniform approximation. Assumption A
is a convenient hypothesis to make that avoids this possible pathology; it
can be substantially weakened or perhaps removed for the unisolvent case.
See [9J for a complete discussion of the problem. Using standard
arguments, it follows that for sufficiently small 6> 0, P6 touches neither f
nor g at any point in [a, h]. Indeed, for sufficiently small 6> 0, an s > °
can be found such that f + f.:( p,,:( g - E on [a, hJ, since if p" does not
touch f or g, it must be bounded away from each. That is, (2.2) does not
hold and the result follows by contraposition.

(2.1) -+ (2.3). This implication follows directly from the observation
that given an element of a unisolvent family, there is another element
arbitrarily close to it (in the uniform norm).

Theorem 3 is implicit in Pinkus's work though with stronger hypotheses.
The argument given here is fundamentally different from his, the latter
being a limit argument.

We may combine Theorems 2 and 3 to obtain

THEOREM 4. Let.l; g he tll'O real-valuedfimctions defined on [a, hJ and
assume that f, g do not touch on [a, h]. Let Jl he a unisolvent family of
degree n or continuous fimctio/ls on [a, h J, where Jl satisries Assumptio/l A
()r Theorem 3. Assume Q== {q E Jl: f:( q:( g on [a, h J} 1= 0. Then there is
an element p* in Jl and points x, < X 2 < ... < x" in [a, h J such that

(a) f(x):(p*(x):(g(x).fc)r all x in [a,hJ;

(b) ftouches p* at x/for i odd, 1 :(i:(n;

(c) g touches p* at x/ fc)r i even, 2:( i:( n.

Furthermore, there is a fimction g* in Jl that sati4res conditions (a'), (b'),
(c') ohtainedfrom (a), (b), (c) hy replacing p* hy q* and interchangingfand
g in (b) and (c). The fimctions p* and q* are the only functions in Jl satis­
fying (a), (b), (c) and (a'), (b'), (c'), respectively. If Q,== {qEJl:f+s:(
q:( g - s on [a, h J}= 0 for alii: > 0, then the functions p* and q* are equal.

Proof The result is true by Theorem 3 if Q is a singleton. If not, then
Q, 1= 0 for some s > 0, again by Theorem 3, and the hypotheses of
Theorem 4 agree with those of Theorem 2.
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3. ApPLICATIONS TO UNIFORM ApPROXIMATION
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DEFINITION. Let SM c C[a, b], and let M: S M~ [0, 00] be a given
extended real-valued functional and define p(M, a) == M - 1([0, a]). M is
said to be norm-like (an NL-functional) if 0' = inf{ M(p): pESM } > 0 and
there exist two families of real-valued functions defined on [a, b], F M =

{f,,: a ~ O} and G M = {g,,: a ~ O} with the following properties:

(3.1) f" and g" do not touch for a ~ 0';

(3.2) for a finite, pEp(M,a) ifff"~p~g,, and pESM ;

(3.3) for a finite, M( p) = a only if there is no e > 0 such that
f" + e ~ p ~ g" - e.

THEOREM 5. Let n be a unisolvent family of continuous functions on
[a, h] of degree n, and let M be an NL-functional with SM = n. If p* mini­
mizes Mover nand FM and GAl are given, then p* oscillates n + 1 times
between f"o and g"o, for some a* ~ O. Conversely, tf for some choice of F H

and GAt> p* in n oscillates n + 1 times betweenf"o and g"o,for some a* ~ 0,
then p* minimizes Mover n.

Proof Assume p* oscillates n + 1 times between f"o and g"o. Then
Q*= {pEn:f"o~p~g"o} is a singleton by Theorem 3 (where by (3.2),
a* ~ 0' so by (3.1) f"o and g"o do not touch). Therefore, for all
pEn- {p*}, p¢p(M,a*) by (3.2), i.e., M(p»a*, whereas M(p*)~a*

by (3.2), so p* uniquely minimizes M. Conversely, suppose p* minimizes
M. Let M(p*) = 0' = inf{ M( p): pEn}. Then there is no pair I: > 0 and
pEn such that fa + e~ p ~ gn - 1:, since such a p would imply by (3.3) that
M( p) #- 0', hence M(p) < ii, contradicting the definition of p*. By
Theorem 2, this implies p* oscillates n + 1 times. By (3.2), it is clear that
a* ~ M(p*).

In the following applications, the verification that M is an NL-functional
is routine. Each was considered by Pinkus [II]. We reproduce them, in
the setting of the NL-functional. The continuity properties that must be
assumed on the approximated or bounding functions are in some cases,
weaker than have heretofore been given in the literature. n is, in each
instance, a unisolvent family of degree n. We assume Assumption A holds
here, though in light of the known (slightly weaker) results, this is almost
surely an expendable hypothesis.

Application 1. Consider uniform approximation of a given q on [a, b]
from n. Define M(p)= IIp-qll. Then take f,,=q-a, g,,=q+a. If q is
continuous, fa and g" cannot touch for a> O. The classic alternation
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theorem [1] is the immediate result where we assume q ¢= JJ. But notice
that f~ and g" possibly may not touch for (J ?: if even if q is discontinuous.

Application 2. Consider uniform approximation of a continuous q on
[a, h] from Jl with restricted ranges, where we approximate from Jl' =
{p E Jl: t(x) ~ p(x) ~ N(X) for all x E [a, h]}. We assume t and N do not
touch. Define M(p) = lip - qll if / ~ P ~ i/ and M(p) =X otherwise. Take
f~=max{/,q-(J},g,,=min{N,q+(J}. It is easy to see that for (J>O, if!
and (( do not touch on [a, h] then f~ and g" also do not touch. The
alternation theorem that results is well known [13], but note that the
hypotheses on / and (( are weaker than those in [13].

Application 3. Consider simultaneous uniform approximation of ql' q2
on [a,h] from Jl using the functional M(p)=max{llp-qlll, IIp-q211}.
Define q,,=max{ql,q2} and q/=min{ql,q2}' Define j~=q,,-(J, g,,=
q / + (J. It is possible for f~ and g" to touch if Jl contains functions with
straddle points (see [2]), but if ql and q2 are continuous and there are no
straddle points,!" and g" cannot touch for (J?: if and Dunham's result [2]
follows immediately.

Other applications include approximation with constraints outside the
interval of approximation (see [8], for example) and approximation by
reciprocals of elements of a Chebyshev space. Additional applications, such
as approximation by trigonometric polynomials on intervals longer than
2n:, "maximin" approximation and "modular" approximation will be
examined in future papers.

4. EXTENSION TO VARISOLVENT FAMILIES

Varisolvent families were first defined and studied by Rice. (See [12] for
a complete discussion.) We take the following definition:

DEFINITION. Let Jl be a family of real-valued functions, continuous on
[a, b]. If for each p E Jl there is a number m(p) (the degree of p) such that
given X I ,X2 , ... ,xm(P) with a~xl<'" <xm(p)~b, and 1:>0 it is possible
to find b > 0 such that

(a) if q E Jl, q of- p, then q - p has at most m(p) - I zeros;

(b) !Y/- p(x/)I < b forj= 1, 2, ..., m(p) implies the existence of PI E Jl
such that PI('\)= y"j= 1,2, ..., m(p) and IIp- PIli <I:.

lf, in addition, 1~ m( p) ~ D for some integer D and all p E JJ. then Jl is
said to be varisolvent.
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Under appropriate conditions, the snake theorem is valid for varisolvent
families.

THEOREM 6. Let f and g he two hounded, real-valuedfunctions defined on
[a, h] and let n be a varisolvent family of functions defined on [a, h].
Assume there is a function WI in nand e > 0 such that f(x) + e~
WI(X)~ g(x)-efor all x in [a, b]. Assume also that there is a function W2
in nand pointsrx l < rx 2 < ... <rx",(112) in [a, b] such that w2 (rx j ) ~ f(rx;) for
i odd and W2(rx i)~ g(rx;) for i even, 1~ i ~ m( W2)' Assume that Assumption A
holds. Finally, assume that n is houndedly sequentially compact. (I.e., the
intersection of n with any closed ball is sequentially compact.) Then there is
an element p* in n and points XI <x2< ... <x",(p.) in [a, b] such that

(a) f(x) ~ p*(x) ~ g(x) for all X in [a, h];

(b) f touches p* at xJor i odd, 1~i~m(p*);

(c) g touches p* at Xi for i even, 2~i~m(p*).

Furthermore, if "odd" and "even" are interchanged in the hypothesis on 11'2
then there is a function q* in n that satisfies conditions (a ' ), (b ' ), (c ' )
ohtained from (a), (b), (c) by replacing p* hy q* and interchanging f and g
in (b) and (c). The functions p* and q* are the only functions satisfving (a),
(b), (c) and (a ' ), (b ' ), (c ' ), respectively.

Proof The statement of this theorem is similar to that of Theorem 2,
but with added hypotheses. The proof follows closely the proof of that
theorem. There are two fundamental problems: the inability to guarantee
the existence of an interpolating element of n for any given set of points
and the varying degree. The former problem appears at the point in the
proof where M is claimed to be nonempty. The hypothesis concerning W2
explicitly guarantees that 11'2 EM. The problem appears again when <Pk)
is claimed to converge to pEn. But since f and g are bounded, <Pk) must
be bounded and hence pEn by sequential compactness. The latter problem
can be dealt with by noting that we may assume, by passing to sub­
sequences if necessary that m(pd = m* (where m* is the largest degree
appearing in the original sequence an infinite number of times). By
Theorem 1-1 in [12], m(p) ~ m*. For each k, Pk - WI has m(pd -I =
m* - I simple zeros by the intermediate value theorem. Also, there is a Pk"
for which lip - Pk.II < &, implying P- 11'[ also has m* - I simple zeros. By
varisolvency, m(p) ~ m* and in fact we have m(p) = m*. The remainder of
the proof mimics that of Theorem 2 with m* replacing n (in Lemma I as
well).

COROLLARY 1. The set n= {L:;'~ I ai<Pi(x)/L:7~ I hi'Pi(X): L:;'~ 1 hi'P,(x)
> 0 for x E [a, h], L:~ 0 (h~) = I } (generalized rationals) where the 'Pi'S and
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if> i '.I' are analytic, is houndedt.~, sequentially compact. So, if in addition, n is
hypothesized to he varisolvent, then n satisfies the conditions o{ Theorem 6.
In particular, ordinary rationals satish' those conditions.

Proo{ By Lemma 9-1 in [12], if a subset of n is bounded then the
coefficients of the elements of the subset, {ail and {hi}, are uniformly
bounded. Thus if for some .If, (p k >is a seq uence from n with II p k II :( .If
for all k, there is a subsequence of (Pk> such that the coefficients of the
Pk functions converge to a coefficient vector (~= ((II' ii 2 , ... , a", hi'
h2 , ... , h",). Using the standard argument for the existence of best rational
approximations (for example, [1, p. 155]), the function p corresponding
to the vector c is in n and II fill :(.{f; i.e., n is boundedly sequentially
compact. Ordinary rationals are known to be varisolvent [12].

Remark. The hypothesis in Theorem 6 about the existence of 11'2 cannot
be removed. Consider for example the situation where f(x) < ° and
g(x) > °for all x in [a, h]. Any element P of n = R;:, (ordinary rationals
with numerator of degree :( n and denominator of degree :( m) can
oscillate at most n* + 1 times between f and g on [a, h] (where n* is the
degree of the numerator of p) since a greater number of oscillations would
force p to have at least n* + 1 zeros, making the numerator of p and
hence p itself the zero function. But it is well known that if p t'- 0,
m(p)=n+m-d+ 1, where d=min{r,s:a" ,#0, h",,#O}. So we have
d:(n-n* and m(p)=n+m-d+ I ~n+m-(n-n*)+ 1=m+n*+ 1 >
n* + 1 provided we choose m ~ I.

5. CONCLUSION

Theorem 4 generalizes somewhat the version of the snake theorem in
[5]. In addition, Theorems 4 and 5 together clearly show the relation
between the snake theorem and the alternation theorems of uniform
approximation. The rather general Theorem 5 can be applied to a variety
of approximation settings. In some cases, these applications provide new
results or extensions to known results, often by virtue of the lack of
continuity requirements on the I and (, functions. We comment that
Theorem 3 remains valid if we replace [a, h] by a compact subset of [a, h]
containing at least n + 1 points. It would be useful to apply Theorem 6 to
problems of uniform approximation by varisolvent families. Unfortunately,
the hypothesis on the existence of the function It'2 causes certain difficulties.
Finally, it appears that the second Remes algorithm may be adapted to
minimize NL-functionals. A future paper will deal with this adaptation.
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